Basic overview towards the assessment of landslide and subsidence risks along a geothermal pipeline network

Introduction

The pipeline network connects various engineering structures (e.g., wells, separator, scrubber, and power station), in the process of transferring geothermal fluids to generate electricity.

Geothermal pipeline may bear a threat to its vicinity through a pipeline failure, related to physical deterioration (e.g. corrosion and fatigue).

The geothermal reservoirs are usually located in mountainous areas that are associated with perilous disaster (e.g. landslides, earthquake, and subsidence).

Geothermal areas record a noteworthy number of disasters, especially due to landslide and subsidence. Therefore, a proper multi-risk assessment along the geothermal pipeline is required.

By considering the risk on loss consequences, as well as the alternatives for mitigation measures, the environmental safety in geothermal working area could be enforced.

Basic overview towards multi-risk assessment along the geothermal pipelines. Basic principles on risks analysis in modeling loss consequences.

Keywords

- Landslide: soil or rock movement downslope by the force of gravity, which may occur in susceptible slopes, geology, and other precursor events (earthquake, extreme precipitation) (Di Pippo, 2012b; Highland & Bobrowsky, 2008).
- Subsidence: surface sinking, that may happen due to natural causes (subsurface erosion, magma process) or human activity (mining, groundwater or gas extraction) (ENV-1 et al., 2009; Highland & Bobrowsky, 2008; Werner & Friedman, 2010).
- Risk: probability of adverse consequences due to the exposure to hazardous events (UNISDR, 2009; van Westen et al., 2011).
- Risk assessment: to estimate the probability and consequence of risk, by analyzing variables of hazard, vulnerability, and coping capacity, also evaluates the alternative decisions or strategies (UNISDR, 2009; van Westen et al., 2011).

Objective

- To model the spatial-temporal scenarios of pipeline failure and capacity analysis, that is taking into account the hazard, vulnerability, and capacity analysis.

Risk Assessment Components

- Geotechnical Modelling (Deterministic / Probabilistic)
- Statistical Analysis
- Variable Weighting & Parameter Scoring
- Expert determination
- Multi-variate analysis
- Scenarios of probable events

Approaches for the Risk Assessment

Landslide

Table 1: Approaches for Landslide Susceptibility (mining, groundwater or gas extraction) (ENV-1 et al., 2009; Highland & Bobrowsky, 2008; Werner & Friedman, 2010).

<table>
<thead>
<tr>
<th>Approaches for the Risk Assessment</th>
<th>Methods</th>
<th>Qualitative</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landslide susceptibility approaches</td>
<td>Geomorphological Analysis</td>
<td>Geotechnical Modeling (Deterministic / Probabilistic)</td>
<td>Geotechnical Modeling (Deterministic / Probabilistic)</td>
</tr>
<tr>
<td>Quantitative</td>
<td>Relatively implicit and rapid</td>
<td>Parameters comparison for hazard distribution or density,</td>
<td>Relatively implicit and rapid</td>
</tr>
<tr>
<td></td>
<td>Expert determination</td>
<td>Univariate or Bivariate (comparing each parameter influence separately),</td>
<td>Expert determination</td>
</tr>
<tr>
<td></td>
<td>Variable Weighting & Parameter Scoring</td>
<td>Statistical Analysis</td>
<td>Variable Weighting & Parameter Scoring</td>
</tr>
<tr>
<td></td>
<td>Indexing the contributing factors through criteria matrix</td>
<td>Geotechnical Modeling (Deterministic / Probabilistic)</td>
<td>Geotechnical Modeling (Deterministic / Probabilistic)</td>
</tr>
</tbody>
</table>

Subsidence

Approaches to assess subsidence susceptibility are by field reconnaissance of ground displacement, e.g.:

- Feature and geological observation (sinkhole, fault, wells, submergence),
- Ground-based levelling (geodetic measurement),
- Geophysical or geotechnical analysis for gravity measurement;
- Remote sensing technique by radar or Lidar interpretation.

Future Work

- Developing new methods to address the multi-risk assessment along the geothermal pipelines, to enforce the environmental safety.
- That is taking into account the hazard, vulnerability, and capacity analysis,
- To model the spatial-temporal scenarios of pipeline failure and its possible monetary loss.