ADAPTABLE DASHBOARD FOR VISUALIZATION OF ORIGIN-DESTINATION DATA PATTERNS

Ieva Dobrāja, PhD Candidate
Prof. Dr. Menno-Jan Kraak
Dr. Yuri Engelhardt

NCG Symposium 2017

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION
INTRODUCTION

ADAPTABLE DASHBOARD FOR VISUALIZATION OF ORIGIN-DESTINATION DATA PATTERNS

Airplane Movements
(www.openflights.org)

Human Movements
(Galka 2016)

Animal Movements
(www.washington.edu)

Ship Movements
(www.marinetracking.com)

UNIVERSITY OF TWENTE.
The main purpose – to communicate complex information and encourage user for further exploration

• Displays the most important information on one screen
• Contains multiple linked graphic representations
• Shows overview, patterns, trends, outliers
• Storytelling
Adaptation – the process to fit the system for current usage situation
Adaptable system – provides users with tools that change the system according to the required context of use
Levels – Information, Technology, User interface, Presentation
(Reichenbacher 2003)

- **When?** (in case of differences, change)
 - User
 - Tasks
 - Context
 (Reichenbacher 2001, 2003)

- **How?** (ways to adapt)
 - Generalization level
 - The way information is visualized

- **What?** (types of adaptation)
 - User interface
 - Content
 - Presentation
 - Function
 (Zipf & Jöst 2006)
MOTIVATION AND PROBLEM STATEMENT

To get insights into O-D data

The need for visualization

Number of variables

Spatial and temporal components

Limitations of traditional dashboards

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>KEP</td>
<td>ABZ</td>
<td>07:05:00</td>
<td>11:35:00</td>
<td>13</td>
<td>0:25:00</td>
<td>1534</td>
<td>0 DM41</td>
<td>2</td>
<td>138</td>
<td>2016-08-15</td>
</tr>
<tr>
<td>024</td>
<td>KEP</td>
<td>ABZ</td>
<td>07:50:00</td>
<td>11:35:00</td>
<td>9</td>
<td>0:45:00</td>
<td>1534</td>
<td>0 DM41</td>
<td>1</td>
<td>69</td>
<td>2016-08-13</td>
</tr>
<tr>
<td>024</td>
<td>KEP</td>
<td>ABZ</td>
<td>08:15:00</td>
<td>11:35:00</td>
<td>9</td>
<td>0:45:00</td>
<td>1534</td>
<td>0 DM41</td>
<td>1</td>
<td>69</td>
<td>2016-08-13</td>
</tr>
<tr>
<td>007</td>
<td>KEP</td>
<td>ALC</td>
<td>06:00:00</td>
<td>11:40:00</td>
<td>5</td>
<td>0:35:00</td>
<td>5207</td>
<td>0 T58</td>
<td>1</td>
<td>189</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>007</td>
<td>KEP</td>
<td>ALC</td>
<td>08:50:00</td>
<td>15:25:00</td>
<td>5</td>
<td>0:35:00</td>
<td>5207</td>
<td>0 T58</td>
<td>1</td>
<td>189</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>007</td>
<td>KEP</td>
<td>ALC</td>
<td>17:00:00</td>
<td>00:15:00</td>
<td>2</td>
<td>0:35:00</td>
<td>5207</td>
<td>0 T58</td>
<td>1</td>
<td>189</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>018</td>
<td>KEP</td>
<td>ALC</td>
<td>15:00:00</td>
<td>21:50:00</td>
<td>5</td>
<td>0:40:00</td>
<td>5207</td>
<td>0 T50</td>
<td>5</td>
<td>750</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>018</td>
<td>KEP</td>
<td>AMS</td>
<td>06:05:00</td>
<td>11:15:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T50</td>
<td>7</td>
<td>1050</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>007</td>
<td>KEP</td>
<td>AMS</td>
<td>07:30:00</td>
<td>12:40:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>183</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>007</td>
<td>KEP</td>
<td>AMS</td>
<td>16:30:00</td>
<td>21:30:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>184</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>AMS</td>
<td>16:30:00</td>
<td>21:30:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>184</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>AMS</td>
<td>16:30:00</td>
<td>21:30:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>184</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>AMS</td>
<td>16:30:00</td>
<td>21:30:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>184</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>AMS</td>
<td>16:30:00</td>
<td>21:30:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>184</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>AMS</td>
<td>16:30:00</td>
<td>21:30:00</td>
<td>5</td>
<td>0:30:00</td>
<td>2036</td>
<td>0 T75</td>
<td>1</td>
<td>184</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>ANC</td>
<td>17:00:00</td>
<td>20:20:00</td>
<td>2</td>
<td>0:30:00</td>
<td>7412</td>
<td>0 T50</td>
<td>2</td>
<td>596</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>ARN</td>
<td>01:15:00</td>
<td>06:10:00</td>
<td>5</td>
<td>0:55:00</td>
<td>2140</td>
<td>0 T52</td>
<td>1</td>
<td>170</td>
<td>2016-06-13</td>
</tr>
<tr>
<td>004</td>
<td>KEP</td>
<td>ARN</td>
<td>01:15:00</td>
<td>06:10:00</td>
<td>5</td>
<td>0:55:00</td>
<td>2140</td>
<td>0 T52</td>
<td>1</td>
<td>170</td>
<td>2016-06-13</td>
</tr>
</tbody>
</table>

Source: ACI EUROPE & SEO AVIATION ECONOMICS (2017)
MOTIVATION AND PROBLEM STATEMENT

To get insights into O-D data

The need for visualization

Number of variables

Spatial and temporal components

Limitations of traditional dashboards

Location
- Origin
- Destination

Time
- Arrival
- Departure
- Travel time
- Transfer time

Attributes
- Airline
- Type
- Airplane capacity
- Ship age
- Crew members (age, nationality)
- Travelled distance
- Ownership
MOTIVATION AND PROBLEM STATEMENT

To get insights into O-D data

The need for visualization

Number of variables

Spatial and temporal components

Limitations of traditional dashboards

Spatial component
(www.martingrandjean.ch)

Temporal component
(www.metrocosm.com)
MOTIVATION AND PROBLEM STATEMENT

To get insights into O-D data

The need for visualization

Number of variables

Spatial and temporal components

Limitations of traditional dashboards

- Fixed layout
- Not meant for exploration purposes
USER-CENTERED DESIGN (UCD)

Activities and iterative process of UCD

(ISO 9241-210 2010)

• Users
• The purpose for a dashboard
• Environment
• Technology
USER-CENTERED DESIGN (UCD)

Activities and iterative process of UCD

(ISO 9241-210 2010)

- User questions of interest (sub-case studies)
- Requirements for the dashboard
USER-CENTERED DESIGN (UCD)

Activities and iterative process of UCD

(ISO 9241-210 2010)

- Prototype of the dashboard
- Feedback from users
THE MAIN CHALLENGES IN VISUALIZATION OF O-D DATA

Dashboard design

Carto(graphical) representation

Information Organization
- Symmetry
- Ease of grouping
- Prototypicality
- Grid

Information Discriminability
- Edge congestion
- Figure-ground contrast

Information Amount
- Color variability
- Visual Clutter

Visual Clutter

Determinants of Visual Complexity
(Miniukovich & De Angeli 2014)
CASE STUDIES

SUB CASE STUDIES

Case Study 1 Airport Connectivity
- Global connectivity of world airports
- Connectivity of an airport of interest
- Development over time
- Trends:
 - Connectivity between Europe and Asia Pacific
 - Development of low cost carriers (LCC)

Case Study 2 Maritime Migration
- Connectivity
 - Labor migration patterns
 - Shipping patterns
 - Temporal patterns
- Links between ship efficiency and literacy level of crew members

Storytelling (to represent known information)
- Growth patterns
- Developments

Exploration (to discover new information)
- What are the main flow patterns?
- Are there changes over time periods?
- Are there relations between parameters?
CASE STUDIES
DATA SETS

• **Airport Connectivity**
 Data set of flights from European airports
 - Scheduled flights for 1 week (3rd week of June) for several years
 - Direct and indirect flights

• **Maritime Migration**
 2 data sets:
 - Ships
 - Crew members of the ships
CONCEPTUAL FRAMEWORK

Users ➔ Problem ➔ Questions

Users ➔ Dashboard interface
(Visualization strategies)

Problem ➔ To get insight into spatial and temporal patterns of O-D data

Questions

Levels
• Elementary
• Synoptic (Intermediate and Overall)
• Temporal (Bertin 1967, Andrienko & Andrienko 2006))

Components
• Space (where?)
• Time (when?)
• Attribute (what?) (Peuquet 1994)

Adaptability ➔ Carto(graphical) representations
(Visual guidelines)
DASHBOARDS FOR BOTH CASE STUDIES

Storytelling
Airport Connectivity

- Sub case studies as storylines

Exploration
Maritime Migration

- Sub case studies and hypothesis based questions as potential storylines

How to represent patterns in a graphical way so that it tells the story behind data?

- Dashboard helps to see patterns and links of involved components
- Sub case studies and hypothesis based questions help to ensure exploration approach

Which graphical representations to use to show the patterns and links?

UNIVERSITY OF TWENTE.
CASE STUDY 1 (EXAMPLES)
ELEMENTARY QUESTIONS

- Where is airport X located? *(space) (Lookup/Locate/Search)*
- Where are located airports with which airport X has connections? *(space) (Lookup)*

Connectivity between Europe and Asia Pacific (2004-2016)
(Location of Connected Airports and Countries)
CASE STUDY 1 (EXAMPLES)
SYNOPTIC QUESTIONS

- Which hub airport provides the most onward connections to Asia Pacific from airport X? *(space and attribute) (Compare)*
- Which airlines provide connections between airport X and Asia Pacific? *(attribute) (Identify)*
FUTURE WORK

- Prototype of the dashboards for both case studies
- Feedback from users
- Usability test
Thank you!

Questions?

i.dobraja@utwente.nl
REFERENCES

• ACI EUROPE & SEO Aviation Economics, 2017. *Airport Industry Connectivity Report*
• Galka, M., 2016. All the World’s Immigration Visualized in 1 Map - Metrocosm. www.metrocosm.com
• Rahman, A., 2017. *Designing a Dashboard as Geo-Visual Exploration Tool for Origin-Destination Data*. The University of Twente.

UNIVERSITY OF TWENTE.
REFERENCES

- www.marinetraffic.com
- www.martingrandjean.ch
- www.metrocosm.com
- www.openflights.org
- www.washington.edu