STARS — Project Overview

G4AWeek

Advances in Remote Sensing
The Hague, September 22nd, 2015

Rolf A. de By

HIGH TECH
HUMAN TOUCH

UNIVERSITEIT TWENTE.
Project synopsis

Spatial information is revolutionizing agriculture in high-income countries but not in low-income countries. Here, important adoption barriers exist: heterogeneity.

STARS: coordinated effort to

– learn,
– identify opportunities, constraints & risks,
– test hypotheses

around potential **exploitation of very high-resolution RS technology in crop-based production systems and livelihoods of smallholders.**
Objectives

• Better understand
 – why RS has not been taken up for SHA, and
 – which investments are required to unlock potential.

• Demand-driven experimental use cases where currently poor information is the norm, and where RS-based workflows can help improve.

• Match
 – direct stakeholder information needs,
 – private sector partners with
 – public sector actors and
 – public good objectives.
Three facets

- **Technology**
 - information products that inform & transform agricultural processes

- **Stakeholder**
 - sustainable models of realization

- **Business**
 - ground-based, airborne, and spaceborne monitoring throughout the crop season
Main hypotheses

We think *we can*

- *monitor crop growth* within the small farms of sub-Saharan Africa and Southern Asia, *using time-series remote sensing*.

If achievable, *this will*

- allow *improved outlooks for crop yields* throughout the season, *informing policy-makers*, and
- ensure more effective evidence-based advisory services at the farm scale, *informing farmers and the small agro-business around them*.
Project facts

• Five partners:
 – ITC,
 – ICRISAT
 – University of Maryland
 – CIMMYT,
 – CSIRO

• 26 months = 1 or 2 crop seasons per region
• Supported by DigitalGlobe & RapidEye data & knowledge contracts
• Started June 1, 2014 will run to July 31, 2016
• Various subgrants/-contracts: Manobi, Uni Sokoine, ESIPPS, BIID, ...
• Budget M$8.7, grant M$7.7
Challenges

Heterogeneity in

- Crops and crop varieties
- Cropping systems
- Soils and nutrient content
- Climatic conditions
- Farm field practices and consistency
 - Farm field boundaries
 - Tillage and planting system
 - Rain-fed vs irrigated fields
 - Use of fertilizers
 - Use of mechanization
Compared to high-income ag

• Smallholder farming in Africa/Asia is a *data-poor* context; there are many facets of the production systems that we do not know.
• Tanzania 2008 maize bumper crop
• Much ground truthing required

• Build an infoconomy with the farmer as active partner?
Where we work

bottom-up, farmer-first
top-down, government-first
mid-level: SME-first
STARS Image Data Stack

250/500 m spectral — 1.5 days — 36 bands

12x

15 m pan/30 m mspectral — 16 days — 8 bands

6x
tasked per 14 days —
5 m mspectral — 1 day — 5 bands

2x
tasked per 14 days —
30-40 cm pan /1.24-3.70 m mspectral — 4.5 day — 8/16 bands

20x
tasked per 14 days —
2-10 cm RGB / 2-10 cm mspectral — 1 day — 5 bands
STARS Data collection

UAV data

eBee
- GR+NIR 12 Mp Canon camera, 3.5cm resolution (5cm vertical)
- GRRe+NIR 4-band 1.2Mp multiSPEC camera, 10cm resolution

Geo X-8000 Octocopter
- Tetracam miniMCA 5/6-band 1.3Mp, 10cm resolution
- RGB Sony NEX-7 24 MP, 2cm resolution
- OPTRIS PI 400 thermal camera, 1.1 Mp, 15 cm resolution

Challenges
- HW robustness, stitching, spectral calibration
Field data

Intensive field campaigns
- Crops and cropping system, crop management
- Plant density & height
- Phenological development
- LAI, fCover, Yield
- Spectrograms
- In-field variability
- Fertility trials

Challenges
- Cloud cover
- Off-nadir angles
- Pre-processing (atmosphere/geometry)
- Analytical processing
- (Licenses)

fCover estimation from pictures taken in the field, making use of plant/soil classification
Public good outcomes

• Landscaping study — CSIRO & partners
 Aim to understand
 – the decision-making environment for key stakeholders
 – the pathways for agricultural development that are likely to emerge
 – the nature of the infrastructure systems needed for delivering the right information to the right stakeholders at the right time.

• Crop Spectrotemporal Signature Library — ITC & partners
 – Spectral info for crops followed over time
 – Accompanying farm field data

• Image analysis algorithm repository — ITC & partners
 – Data ingestion workflows
 – Analytical workflows
Finally: differences with G4AW

- Focus on next-frontiers
- Focus on VHR RS, spectral characters of crops
- Focus on eventual economic development, not (now/necessarily) on business generation
- Focus on stakeholder classes
 - Poorest of the poor
 - The one-(wo)man SME
 - The national government
UNIVERSITY OF TWENTE.

DR. IR. R.A. (ROLF) DE BY
Associate Professor
Department of Geo-Information Processing
Faculty of Geo-Information Science and Earth Observation

P +31(0)53 4874 553 E r.a.deby@utwente.nl
M +31(0)6 4604 2254 I www.utwente.nl/en
F +31(0)53 4874 335 I www.itc.nl

P.O. Box 217
7500 AE Enschede
The Netherlands

Building ITC
Hengelosestraat 99
7514 AE Enschede