METEO-HYDROLOGISCHE RAMPEN EN RISICO-ANALYSE

JANNEKE ETTEMA, VICTOR JETTEN, Cees van WESTEN

DEPARTMENT EARTH SYSTEM ANALYSIS AT ITC

Applying relevant geo-information for understanding earth surface and geological processes, the sustainable use of geo resources, and the use of geo-science in the mitigation of natural or man-made damage to our environment.

Chair Prof. Freek van der Meer (Earth Systems Science)

- Georesource exploration
- Geonvironmental engineering
- Geodynamics

Chair Prof. Victor Jetten (Natural Hazards and Disaster Risk Management)

- Geohazard analysis
- Multihazard Risk Assessment
- GI for Disaster Management

UNIVERSITY OF TWENTE

24 staff
27 PhD researchers

DISASTER MANAGEMENT FRAMEWORK

<table>
<thead>
<tr>
<th>Causes</th>
<th>Effects</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazards: landslides, floods, earthquakes</td>
<td>Risk analysis</td>
<td>Disaster mitigation</td>
</tr>
<tr>
<td>Hazard analysis</td>
<td>Vulnerability in urban and rural areas</td>
<td>Damage assessment, planning, awareness</td>
</tr>
<tr>
<td>Weather, climate, earth processes</td>
<td>Long-term onsite and off-site effects</td>
<td>Prevention and mitigation, soil and water conservation</td>
</tr>
</tbody>
</table>

WAT DE INHOUD IS VAN DEZE PRESENTATIE

- Rampen wordt veroorzaakt door zowel het natuurgeweld als onze eigen activiteiten
- Basisprincipes van risico-analyse en management
- Belang van meteorologische en klimatologische gegevens voor begrijpen en voorkomen van natuurrampen

Recent flooding in Bangkok...

Flooding in Thailand
Damage Estimates (23 Oct)

- Death toll of 350
- About 113,000 people have been relocated to rescue shelters due to the floods.
- 1,743 evacuation centres are open and able to accommodate over 800,000 people.
- Economic losses are estimated to be as much as 60 to 90 billion baht ($2.9 million) (Thai government)
- The Federation of Thai Industries (FTI) estimates the cost of damage caused by the floods in the Central Plains region at 190 billion baht ($6.1 billion)
- More than 900 large factories have been shut, affecting more than 200,000 workers

Disaster Management Cycle

- Components: relief, recovery, reconstruction, prevention and preparedness.
- Initially most emphasis was given to disaster relief, recovery and reconstruction.
- Later more attention was given to disaster preparedness.
- Eventually the efforts are focusing on disaster prevention and preparedness.

A Definition of Disasters

“A serious disruption of the functioning of a community or a society, causing widespread human, material, economic or environmental damage which exceeds the ability of the affected community to cope using its own resources.” (EEA, 2005)

Natural Hazards and Disasters

A serious disruption of the functioning of a community or a society, causing widespread human, material, economic or environmental damage which exceeds the ability of the affected community to cope using its own resources.” (EEA, 2005)

Disaster Risk Management

Scientific research is about analyzing risk.

“Risk” is the overlap of a hazard and society

A natural process

Risk

Disaster

Disaster Risk Management

- Natural Hazards
- Risk
- Society

- Vulnerability
- Inventory
- Awareness
- Coping strategies
- Cost
- Impact
- Dynamics
- Triggers
- Frequency
- Location

University of Twente.
WHAT IS RISK?

RISK: The probability of harmful consequences, or expected losses (deaths, injuries, property, livelihoods, economic activity disrupted or environment damaged) resulting from interactions between (natural, human-induced or man-made) hazards and vulnerable conditions.

- How can we assess risk?

RISK ASSESSMENT: A methodology to determine the nature and extent of risk by analyzing potential hazards and evaluating existing conditions of vulnerability that could pose a potential threat or harm to people, livelihoods and the environment on which they depend.

RISK IS A SPATIAL PROBLEM

- Hazard: How much water when and where?
- Elements at risk: Which elements where, and how many/much?
- Vulnerability: How much water where which elements at risk are?

RISK IS MULTIDISCIPLINARY SPATIAL PROBLEM

Hazard assessment: earth scientists, hydrologists, volcanologists, seismologists, meteorologists
Elements at risk: geographers, urban planners, civil engineers
Vulnerability: depending on type of vulnerability by different scientists from: structural engineers, civil engineers to geographers, social scientists, ecologists
Cost estimation: economists
Risk assessment: GIS experts

EXAMPLE: FLOOD RISK SUSCEPTIBILITY

Risk assessment framework:

- A: Basic data sets
 - Static
 - Dynamic
- B: Susceptibility & hazard modeling
- C: Hazard assessment
- D: Vulnerability assessment
- E: Total risk
ENVIRONMENTAL FACTORS IMPACTING ON SUSCEPTIBILITY

DOWNSTREAM 2008 FLOOD RECONSTRUCTION NAGA CITY

PROBABILITY OF HAZARDS

DROUGHT SUSCEPTIBILITY MAP (MOROCCO)

WHO IS AT RISK: VULNERABILITY

- Physical vulnerability: building strength, materials, nr floors etc.
- household composition, education/literacy, financial status, gender issues, age etc.
- Also questions on awareness, adaptation, mitigation, risk perception

RISK ASSESSMENT FRAMEWORK

- A: Basic data sets
 - Static
 - Dynamic
- B: Susceptibility & hazard modelling
- C: Hazard assessment
- D: Vulnerability assessment
- E: Total risk
ELEMENTS AT RISK INVENTORY

<table>
<thead>
<tr>
<th>Texture Type</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKONOS PAN</td>
<td>1 m</td>
</tr>
<tr>
<td>IKONOS MS</td>
<td>4 m</td>
</tr>
<tr>
<td>SPOT 5 HRG</td>
<td>10 m</td>
</tr>
<tr>
<td>ASTER</td>
<td>15 m</td>
</tr>
</tbody>
</table>

LASER ALTIMETRY AND BUILDING FOOTPRINTS

LAND USE: tea and rice, some deforestation

COMMUNITY-BASED CHARACTERISATION OF THE THREAT DURING FLOODING

- **E:** total risk
- Risk assessment
 - **F:** Quantitative
 - **G:** Qualitative
- **H:** Risk evaluation

RISK ASSESSMENT

Depending on the objective of the study:
- Household composition
- Livelihood
- Socio-economic status
- Gender
- Age distribution
- Education
- Combine into indicators

POPULATION ATTRIBUTES
COMPLICATING PROBLEM: CLIMATE CHANGE

- Climate change takes disastrous forms in many countries: drought, floods, hurricanes etc.
- Direct damages (loss of lives, buildings), indirect damages (economy, social disruption, gender issues etc.)
- Since 1990 (www.emdat.be, 2011)
- 18000 disasters reported
- 6 billion people affected

SUMMARY STATISTICS (UNTIL 2010)

INCREASE IN NUMBER DISASTERS

CLIMATE CHANGE INCREASES RISK AND VULNERABILITIES

EXTREMES AND CLIMATE CHANGE

- Extremes are at the tail end of a probability distribution curve
- Different ways to describe an extreme e.g. as a threshold, or return period
- We know that the global temperature is rising – how will this affect the extremes?

SAFELEAND - CLIMATE SCENARIOS

99.9% percentile for daily precipitation
MULTI-HAZARD RISK ASSESSMENT

CHANGES stands for: Changing Hydro-meteorological risks – as Analyzed by a New Generation of European Scientists

To develop an advanced understanding of
• how global changes will affect the temporal and spatial patterns of hydro-meteorological hazards and associated risks in Europe,
• how these changes can be assessed and modeled
• how these can be incorporated in sustainable risk management strategies, focusing on spatial planning, emergency preparedness and risk communication

MARIE CURIE PROJECT: CHANGES - INTEGRATED RISK MANAGEMENT

PILOT AREAS
• The project is not about study areas but about methodologies and tools
• ESRs should develop methods and apply them into at least two areas
• Interaction between ESRs is very important.
• Medium to small scales
• Open source methods
• ESR should have appropriate disciplinary background & GIS experience

OBJECTIVES
• Analysis of historical hydro-meteorological extreme events based on observations, satellite and re-analysis data to get better understanding of correlation between weather and hazards
• Analysis of expected climate changes in triggering conditions and extreme weather events
• Downscale climate change projections with focus on extreme weather events
• Investigate uncertainty estimation in these projected changes
• Analyze effect of projected changes in hydrological and land slide models (in collaboration with ESR02 and ESR03)
HAZARD MODELLING: FLOODS

The conceptualisation of Rice field as a series pools

During a hurricane many small breakthroughs causing a cascade effect
Identify weak spots
Find strategic places to store water and strengthen dikes
Store water before it reaches Yen Bai
RISK ASSESSMENT

- Overview of entire process for flooding & landslides
- Individual GIS operations for each step
- Resulting in risk curves
- Same scheme for meteorological hazards
- Feedback if any condition changes

DISASTER RISK MANAGEMENT

Disaster Risk Management (DRM) can be described as an array of measures involving public administration, decentralization, organizational and institutional development (or strengthening), community-based strategies, engineering, settlement development and land use planning. It also takes into consideration environmental issues as part of the risk mitigation and reduction strategies.

FRAMEWORK OF RISK ASSESSMENT

\[\text{RISK} = \text{HAZARD} \times \text{VULNERABILITY} \times \text{AMOUNT} \]

- Hazard = Probability of event with a certain magnitude
 - Spatial probability: probability of a hazard event with a certain intensity happening at a particular location (e.g. pixel)
 - Temporal probability: probability that an event with a certain intensity happens within a given period of time.
 - Magnitude probability: probability that an event happening has a certain magnitude-intensity

RISK = HAZARD * VULNERABILITY * AMOUNT

- Hazard = Probability of event with a certain magnitude

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnitude</td>
<td>Only those maximum fluvial events with a certain level of magnitude are reliable.</td>
</tr>
<tr>
<td>Frequency</td>
<td>The typical frequency of occurrence of a given magnitude of an event is described either by the expected frequency or the return period.</td>
</tr>
<tr>
<td>Duration</td>
<td>The length of time over which a hazardous event persists, from the onset to peak period.</td>
</tr>
<tr>
<td>Area Deemed</td>
<td>The spatial area covered by the hazardous event.</td>
</tr>
<tr>
<td>Speed of Onset</td>
<td>The length of time between first appearance of an event and its peak.</td>
</tr>
<tr>
<td>Spatial Dispersion</td>
<td>The pattern of distribution over the space at which the impact occurs.</td>
</tr>
<tr>
<td>Temporal Spanning</td>
<td>The sequencing of events, spanning along a continuum from events to periodic.</td>
</tr>
</tbody>
</table>
1. Provide high-level training, teaching and research in the field of hazard and risk management in a changing environment context

2. Reduce fragmentation of research on natural processes

3. To develop an innovative methodological framework combined with modeling tools for probabilistic multi-hazard risk assessment taking into account changes in hazard scenarios and exposed elements at risk and for increasing risk awareness