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ABSTRACT The aim of this study was to test the performance of hyperspectral data in 
discriminating mangroves at the species level. First, spectral responses between 350 nm and 
2500 nm of 16 Thai tropical mangrove species were recorded from the leaves, using a field 
spectrometer under laboratory conditions. Next, the mangrove spectra were statistically tested to 
see whether they significantly differed at every spectral location. Finally, the spectral 
separability between each pair of mangrove species was quantified using the J-M distance 
measure. The results demonstrated that the mangrove species were spectrally separable, and we 
therefore anticipate the use of hyperspectral sensors for mangrove species classification. 
 
1. INTRODUCTION 
The limited spectral bands of a traditional sensor such as Landsat TM offer a clear example of 
how opportunities to exploit spectral responses linked to the physical-chemical properties of 
plants are lost (Curran, 1989, Elvidge, 1987, 1990, Himmelsbach et al., 1988, Kumar et al., 
2001, Williams and Norris, 1987). This problem can be resolved using more delicate methods 
such as hyperspectral technology. Additionally, there is already a couple of evidence to show 
that using hyperspectral data helps to improve the study of mangroves at a finer level. Demuro 
and Chisholm (2003) give a good example of how a hyperspectral sensor (HYPERION) handles 
the task of discriminating 8-class mangrove communities in Australia - a task considered 
difficult for any multispectral sensors (Green et al., 2000). Moreover, the AVIRIS sensor 
performed just as well in mapping the mangrove communities of the Everglades, Florida 
(Hirano et al., 2003). So far no conclusion has been reached as to whether or not hyperspectral 
information can be used to study mangroves at the species level (i.e. for species discrimination). 
Consequently, this study aims to test and quantify the capability of hyperspectral data based on 
laboratory mangrove spectra recorded from 16 Thai tropical mangrove species. 
 
2. METHODS 
 
2.1 Acquisition of hyperspectral data 
 
2.1.1 Mangrove leaf preparation Mangrove leaves of 16 Thai tropical mangrove species 
were collected using a line-transect method from mangrove trees (higher than 2.5 m) in the 
natural mangrove forest of Ao Sawi (Sawi Bay), Chumporn province, in the south of Thailand 
(10º 15’N, 99º 7’E). There were ten transects randomly placed throughout the area so as to 
collect tree samples from every mangrove zones (e.g. pioneer, intermediate, and upper zones). 
The leaves were picked off the trees just before spectral measurement in order to preserve the 
original leaf quality. Specifically, on 6 February 2001 a few major branches of every randomly 
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sampled tree were cut off and transported to the laboratory, and the following day the leaves 
were picked for spectral measurement. 
 
2.1.2 Leaf spectral measurements The freshly picked leaves of each species were randomly 
divided into 30 piles of the same size (20 to 30 leaves). For each spectral measurement, each 
pile of leaves was spread on top of a black metal plate painted with ultra-flat black paint until 
the background metal plate could not be seen. Each measurement was performed under 
laboratory conditions (i.e. dark room, 25ºC) in order to avoid ambient light sources unrelated to 
the true spectral signal of the leaves. As a result, 30 spectra were measured for each mangrove 
species (Table 1). 
 
Each measurement was conducted using a FieldSpec® Pro FR spectroradiometer (Analytical 
Spectral Device, Inc.). This spectroradiometer is equipped with three spectrometers (i.e. VNIR, 
SWIR1, and SWIR2), covering 350 nm to 2500 nm, with sampling intervals of 1.4 nm between 
350 nm and 1050 nm, and 2 nm between 1000 nm and 2500 nm. The spectral resolution of the 
spectrometers was 3 nm for the wavelength interval 350 nm to 1000 nm, and 10 nm for the 
wavelength interval 1000 nm to 2500 nm. The sensor, equipped with a field of view of 25°, was 
mounted on a tripod and positioned 0.5 m above the leaf plate at the nadir position. A halogen 
lamp fixed at the same position was used to illuminate the sample plate. The bi-directional 
reflectance distribution function (BRDF) of each sample is corrected by rotation method. The 
radiance was converted to reflectance, using a spectralon reference panel for every measurement 
as well as the correction of the spectrometer internal current (dark current). 
 
2.2 Experimental setup 
 
2.2.1 Statistical test First of all, we tested whether the mangrove spectra of the 16 species 
(Table 1) were statistically different at every spectral band, that is to say, the null hypothesis Ho: 
µ1=µ2=…=µ16 versus the alternative hypothesis Ha: µ1≠µ2≠…≠µ16, where µi was the mean 
reflectance value of the ith species (i.e. i = 1, 2,…, 16). The test was carried out using one-way 
ANOVA at every spectral location between 350 nm and 2500 nm (a total of 2151 spectral bands) 
with a 95% confidence limit (α=0.05). 
 
2.2.2 Spectral separability Although the statistical test demonstrated whether the mangrove 
species were significantly different or not at the spectral locations, it could not quantify the 
likelihood of each pair of the mangrove species being spectrally separated from one another. 
This pair-wise information is necessary for a detailed investigation of species separability. 
Therefore, we applied the J-M distance measure to quantify this for each mangrove pair. The 
distance measure reported a separability value between 0 and 2 for every mangrove pair. The 
pairs that possessed a value close to 2 were highly separable, and vice versa. Details of the 
distance measure are given by Richards (1994). 
 
Because the J-M distance measure is a parametric method, it was necessary to reduce the 
number of spectral features (bands) prior to the calculation. It was not possible to calculate the J-
M distance using all 2151 bands because of the singularity problem of matrix inversion (i.e. the 
number of spectral samples per mangrove species is too small). In this study, we applied a 
wrapper feature selection approach (please see John et al., 1994; Kavzoglu and Mather, 2002; 
Kohavi and John, 1997; Siedlecki and Sklansky, 1989; Vaiphasa, 2003; Yu et al., 2002) to 
reduce the number of spectral features.  
 
In our experiment, we applied the algorithm to select (i) the best 2-band combination, (ii) the 
best 3-band combination, (iii) the best 4-band combination, (iv) the best 6-band combination, (v) 
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the best 8-band combination, and (vi) the best 10-band combination out of the total of 2151 
bands. For every selection, the algorithm was initialized with the following parameters: 
crossover rate = 50%, mutation rate = 1%, fitness score threshold = 80%. The maximum number 
of iterations was 1000. 
 
3. RESULTS 
 
3.1 ANOVA test 
Following the null and alternative hypotheses stated in the previous section, the test result (p-
values) of every spectral band was illustrated (see Figure 1). A reflectance of Rhizophora 
apiculata measured in the laboratory was also drawn in the plot to give an impression of the 
actual mangrove spectral continuum collected by the spectrometer. According to the statistical 
test, the 16 mangrove species under study seemed to be statistically different at most of the 
spectral locations, with a 95% confidence level (p-value<0.05). The total number of spectral 
bands that had p-values less than 0.05 was 1941, of which 477 even complied with a 99% 
confidence level (p-value<0.01). The exceptions were in the ultraviolet region at the left end of 
the plot, in the shortwave infrared region at the right end, and a few bands of the near-infrared 
region where the p-values were higher than 0.05. 
 
3.2 Wrapper feature selection 
The objective of this section is to reduce the number of bands prior to the distance analysis in 
the next section. We applied the feature selection algorithm to search for the best spectral band 
combinations out of the total of 2151 bands. The real-time performances of six different sizes of 
band combination are shown in Figure 2. The vertical axis represents the average fitness score 
or the information about class separability (i.e. estimated classification accuracy), ranging from 
0% to 100%. The horizontal axis is the number of iterations. At the beginning, the average 
fitness scores of the six experiments increased dramatically, and then leveled off at about the 
40th iteration. Only the band combinations with a number of members greater than four could 
successfully pass the fitness threshold level (i.e. 80% classification accuracy). In contrast, the 
band combination with three members struggled to stay above the threshold level (i.e. it 
fluctuated above and below the threshold line) because the spectral information of three bands 
was not enough to resolve the difference between 16 mangrove species. For the same reason, the 
band combination with only two members could achieve nothing better than a 50% fitness score. 
After running the algorithm for 1000 iterations, the bands were successfully selected for each 
experiment, and these are shown in Figure 3. 
 
We note that in all cases the experiments selected at least one spectral band from the red edge 
area (the steep spectral slope between band 331 and band 410). The second most common 
spectral feature selected by most of the experiments was at another steep slope between band 
950 and band 1090 (infrared edge). Disagreements might be noticed between the statistical test 
(Figure 1) and the band selection (Figure 3), as two bands (one from Figure 3(iv), the other from 
Figure 3(vi)) were selected from the noisy region at the right end of the mangrove spectral 
reflectance, which would not give any useful spectral information. However, we found that both 
of them possessed p-values lower than 0.05. 
 
According to the 80% fitness threshold, we considered that the performance of the best four 
bands (Figure 3(iii)) was the most computationally efficient, as it satisfied the selected fitness 
threshold with a lower number of selected bands. As a result, we used the four selected bands 
for the experiment in the next section. The best four were band 371 (720 nm), band 928 
(1277 nm), band 1066 (1415 nm), and band 1295 (1644 nm). 
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3.3 J-M distance 
We applied the J-M distance measure to reveal the spectral separability between each pair of 
mangrove species (Table 2), using the four spectral bands selected in section 3.2. The distance 
measure reported a number between 0 and 2 for every species pair, in which 0 was the lowest 
level of separability and 2 was the highest. The overall spectral separability between the pairs of 
mangrove species seemed high, since most of them acquired a level of separability higher than 
1.90. Instances where the distance was lower than the 1.90 separability level are highlighted in 
Table 2. 
 
4. DISCUSSION 
Despite omitting the important issue of spatial resolution from this study, we anticipate that 
hyperspectral data, which can now be acquired from many airborne sensors and hyperspectral 
satellites, can be used for discriminating mangroves at the species level. The results of the 
ANOVA hypothesis test (Figure 2) and the J-M distance analysis (Table 2) provide strong 
supporting evidence to this effect.  
 
It is very likely that the ultraviolet region possessed relatively high p-values because our 
laboratory measurements relied on an artificial light source (halogen lamp) that radiated a 
negligible amount of ultraviolet energy, and consequently the signal-to-noise (S/N) ratio of the 
ultraviolet range was relatively low. Therefore, the region did not contain any meaningful plant 
information but the noise. Like the ultraviolet region, the p-values of the shortwave infrared 
region on the right also suffered from the S/N ratio, because the incandescent lamp in use did 
not strongly radiate the energy in this region. On the other hand, the weakness of the light 
source caused no deterioration in the p-values of the bands in the near-infrared region. Instead, 
the difficulty in discriminating mangroves when using near-infrared spectral information was 
probably caused by a characteristic of plants in general: they have little absorption on the 
electromagnetic wave of this region (Kumar et al., 2001). Thus, light reflection and transmission 
from mangrove leaves are the two dominating factors of the near-infrared spectral response. 
These two factors are controlled by the internal structure of the leaves (Gates, 1965; Sinclair et 
al., 1971), which is quite similar across mangrove species (Tomlinson, 1994). 
 
The J-M distance analysis (Table 2) reveals the spectral distance between every pair of 
mangrove species. In general, the result convinces us that the species are highly separable, as 
most of the mangrove pairs possess a spectral distance higher than 1.90. There are only some 
pairs that possess slightly lower spectral distances (highlighted in Table 2). Among the 
highlighted pairs, the lowest distance score of 1.56 between Acrostichum aureum (coded 2) and 
Bruguiera gymnorrhiza (coded 4) surprised us most, because the former is a type of understorey 
plant whereas the latter belongs to the Rhizophoraceae family. It seems that both plants are 
likely to share similar leaf biophysical properties. 
 
The singularity problem during matrix inversion made it impossible to use all 2151 spectral 
bands for the calculation of the J-M distance. Thus, we had to apply the wrapper feature 
selection algorithm prior to the calculation. The result showed that only four bands were 
necessary for guaranteeing the class separability of the 16 mangrove species: 720 nm, 1277 nm, 
1415 nm, and 1644 nm. The four bands selected, however, cannot for the most part be 
reconciled with the locations of the spectral responses of mangrove leaf pigments (chlorophylls 
and carotenoids) found in the literature (Das et al., 2002). This could lead us to hypothesize that 
the spectral responses of these pigments, which are situated at a relatively short wavelength 
between 380 nm and 750 nm, may be less important spectral information for mangrove species 
discrimination than the information from the spectral responses of the other leaf components 
that interact with light energy at longer wavelengths. This may be because mangroves generally 
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possess similar amounts of pigment substances across the species, and the differences in other 
leaf components, such as sugar, water, protein, oil, lignin, starch, and cellulose, that normally 
interact with light at longer wavelengths (Kumar et al., 2001) are more marked.  
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Figure 1: The result of 
the ANOVA test (black 
line) showing against a 
laboratory reflectance 
of Rhizophora 
apiculata (white line) 

Figure 2: Real-time 
performance of the 
wrapper feature selection 
for 1000 iterations 

Figure 3: The locations of 
spectral bands selected by the 
feature selection tool: (i) the 
best 2-band, (ii) the best 3-
band, (iii) the best 4-band, 
(iv) the best 6-band, (v) the 
best 8-band, and (vi) the best 
10-band combinations 
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 Mangrove species Species 

code 
Number 

of spectra  
Avicennia alba 1 30 
Acrostichum aureum 2 30 
Bruguiera cylindrica 3 30 
Bruguiera gymnorrhiza 4 30 
Bruguiera parviflora 5 30 
Ceriops tagal 6 30 
Excoecaria agallocha 7 30 
Heritiera littoralis 8 30 
Lumnitzera littorea 9 30 
Lumnitzera racemosa 10 30 
Nypa fruticans 11 30 
Pluchea indica 12 30 
Rhizophora apiculata 13 30 
Rhizophora mucronata 14 30 
Sonneratia ovata 15 30 
Xylocarpus granatum 16 30 

J-M Dist 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1
2 1.99
3 1.99 2.00
4 2.00 1.56 1.99
5 1.99 1.99 1.99 1.82
6 2.00 1.99 1.97 1.99 1.90
7 1.94 1.99 2.00 1.99 1.99 2.00
8 1.99 1.99 2.00 1.94 1.99 1.99 1.98
9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

10 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.99
11 1.99 1.99 2.00 1.99 1.99 2.00 1.99 1.99 2.00 2.00
12 2.00 2.00 1.98 1.99 1.99 1.87 2.00 2.00 1.99 2.00 2.00
13 1.99 1.99 1.93 1.99 1.99 1.99 1.99 1.99 2.00 1.99 1.99 1.99
14 2.00 1.99 1.72 1.99 1.73 1.85 2.00 1.99 2.00 2.00 1.99 1.89 1.86
15 1.99 1.99 1.99 1.95 1.84 1.99 1.99 1.99 1.99 2.00 1.99 1.99 1.98 1.99
16 1.97 1.99 1.99 1.82 1.96 2.00 1.98 1.99 2.00 2.00 1.99 2.00 1.99 1.99 1.99  

 
 

Table 2 (Below): The J-M 
distances between the pairs 
of 16 mangrove species were 
calculated using the four 
bands selected in section 3.2. 
The pairs that possess a 
separability level lower than 
1.90 are highlighted. 

Table 1 (Left): Thirty 
spectra of mangrove 
leaves were collected per 
mangrove species, using a 
spectroradiometer  

 


