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THESIS 



Abstract 

 
Mangroves, important components of the world’s coastal ecosystems, are 

threatened by the expansion of human settlements, the boom in commercial aquaculture, 
the impact of tidal waves and storm surges, etc. Such threats are leading to the increasing 
demand for detailed mangrove maps for the purpose of measuring the extent of the 
decline of mangrove ecosystems. Detailed mangrove maps at the community or species 
level are, however, not easy to produce, mainly because mangrove forests are very 
difficult to access. Without doubt, remote sensing is a serious alternative to traditional 
field-based methods for mangrove mapping, as it allows information to be gathered from 
the forbidding environment of mangrove forests, which otherwise, logistically and 
practically speaking, would be extremely difficult to survey. Remote sensing applications 
for mangrove mapping at the fundamental level are already well established but, 
surprisingly, a number of advanced remote sensing applications have remained 
unexplored for the purpose of mangrove mapping at a finer level. Consequently, the aim 
of this thesis is to unveil the potential of some of the unexplored remote sensing 
techniques for mangrove studies. Specifically, this thesis focuses on improving class 
separability between mangrove species or community types. It is based on two important 
ingredients: (i) the use of narrow-band hyperspectral data, and (ii) the integration of 
ecological knowledge of mangrove-environment relationships into the mapping process. 

 
Overall, the results of this study reveal the potential of both ingredients. They show that 
delicate spectral details of hyperspectral data and the spatial relationships between 
mangroves and their surrounding environment help to improve mangrove class 
separability at the species level. Despite the optimism generated by the overall results, it 
was found that appropriate data treatments and analysis techniques such as spectral band 
selection and noise reduction were still required to harness essential information from 
both hyperspectral and ecological data. Thus, some aspects of these data treatments and 
analysis techniques are also presented in this thesis. Finally, it is hoped that the 
methodology presented in this thesis will prove useful and will be followed for producing 
mangrove maps at a finer level. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Synthesis 



6.1. Introduction 
 

Mangrove forests are part of the coastal environment and stretch throughout the 
tropics and sub-tropics of the world (Tomlinson, 1994; Hogarth, 1999). They cover up to 
75% of the world’s tropical coastlines (Spalding et al., 1997). Their importance is 
recognisable in such aspects as forestry, fisheries, and environmental conservation 
(Barbier and Sathiratai, 2004). Similar to many other natural resources, mangroves are 
declining because of the influence of natural disturbance and human intervention. This 
has negative effects on economic development and ultimately on the environment as a 
whole (Barbier and Sathiratai, 2004). These repercussions have subsequently drawn 
considerable attention to the conservation and management of this unique estuarine 
ecosystem (Ramsar Convention, 1971; Linneweber and de Lacerda, 2002).  

 
Precise and up-to-date spatial information on the current status of mangroves is a 

prerequisite for the sustainable conservation of mangrove ecosystems. It is almost 
impossible to gather this information by using traditional field surveys because mangrove 
swamps are extremely difficult to access. Fortunately, it has been discovered that remote 
sensing technology is a promising solution to this problem of accessibility (Green et al., 
2000; Held et al., 2003).  

 
To date, the use of remote sensing technology for gathering spatial information 

from mangrove forests (e.g., mapping and monitoring) at the community levels has been 
extensive (Aschbacher et al., 1995; Ramsey III and Jensen, 1996; Gao, 1999; Sulong et 
al., 2002), but the application at the species level, which is necessary for studying 
mangrove species diversity, is still inconclusive (Demuro and Chisholm, 2003; Held et 
al., 2003). Therefore, this thesis further explores the capability of remote sensing 
technology to map mangroves at the species level, using two important ingredients: (i) 
the use of narrow-band hyperspectral data, and (ii) the integration of ecological 
knowledge of mangrove-environment relationships into the mapping process. 
 
The key objectives of this study are: 
 
(1)  to demonstrate the potential of hyperspectral technology for discriminating 

mangroves at the species level 
(2) to test whether a form of genetic algorithms can be used for selecting a 

meaningful subset of spectral bands that maintains spectral separability between 
mangrove species 

(3) to investigate one of the most popular methods of reducing noise levels in 
hyperspectral data (i.e., spectral smoothing), as well as propose a technique for 
selecting an appropriate smoothing filter for the data at hand 

(4) to test whether mangrove-environment relationships can be exploited in order to 
improve the mapping accuracy. 

 
 
 
 



6.2. The main results 
 
6.2.1. Hyperspectral data for mangrove discrimination 
 

Although multispectral sensors are the most cost-effective remote sensing 
solutions for mangrove mapping (Aschbacher et al., 1995; Ramsey III and Jensen, 1996; 
Gao, 1999; Green et al., 2000; Sulong et al., 2002; Held et al., 2003), they are still limited 
to applications for mapping at the regional scale. One of their major constraints is the 
lack of spectral detail. 
 

Unlike multispectral sensors, hyperspectral sensors that possess 100 or more 
narrow spectral bands between the visible and shortwave infrared regions have already 
proved to have the potential for discriminating terrestrial plants at the species level 
(Cochrane, 2000; Schmidt and Skidmore, 2003). Nevertheless, the hyperspectral research 
on mangroves published to date (Green et al., 2000; Demuro and Chisholm, 2003; Held 
et al., 2003; Hirano et al., 2003) remains inconclusive when it comes to using the 
technology for tropical mangrove species discrimination.  
 

The prerequisite study described in Chapter 2 took the investigation into this issue 
one step further. It was a laboratory investigation to see whether hyperspectral data 
contained adequate spectral information for discriminating mangroves at the species 
level. The study helped us in deciding whether to invest in the expensive acquisition of 
airborne or satellite hyperspectral data. In brief, the spectral responses of 16 tropical 
mangrove species were recorded from the leaves, using a 2151-band spectrometer under 
laboratory conditions. Then, the mangrove spectra at every spectral location were 
statistically compared using one-way ANOVA to see whether they significantly differed. 
Finally, the spectral separability between each pair of mangrove species was calculated 
using the J-M distance in order to confirm the results. 

 
It turned out that the leaf spectra of different mangrove species were statistically 

different at most spectral locations, with a 95% confidence level (Figure 6.1). 
Specifically, the total number of spectral bands that had p-values < 0.05 was 1941, of 
which 477 bands had p-values < 0.01. Moreover, the J-M distance indices calculated for 
all pairs of the mangrove species also confirmed that the mangroves were spectrally 
separable (i.e., J-M distance � 1.90), except the pairs that comprised members of 
Rhizophoraceae (Table 6.1).  
 

Overall, the results encourage further investigation into the use of airborne and 
satellite hyperspectral sensors for discriminating mangrove species. However, one should 
bear in mind the difficulty in discriminating the members of the Rhizophoraceae family. 
Since the Rhizophoraceae family usually dominates tropical mangrove forests, difficulty 
in discriminating these mangroves is expected when implementing the on-board 
hyperspectral sensors.  
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Figure 6.1: The plot of p-values of the ANOVA test (black line) showing against a 
laboratory reflectance of Rhizophora apiculata (grey line) 
 
Table 6.1 
The J-M distances between all pairs of 16 mangrove species (120 pairs in total). The 
species names are coded in Chapter 2. The pairs that possess separability levels lower 
than 1.90 are highlighted in grey. Mangrove species are grouped by family name. 

 

  
Avicennia- 

ceae 
Pterida- 

ceae Rhizophoraceae Euphorbia- 
ceae 

Sterculia- 
ceae 

Combreta- 
ceae Wurmb Astera- 

ceae 
Sonneratia- 

ceae 
Melia- 
ceae 

  AVA ACA BC BG BP CT RA RM EA HL LL LR NF PI SO XG 
Avicennia- 

ceae 
 

AVA                 
Pterida- 

ceae 
 

ACA 1.99                
 

BC 1.99 2.00               
 

BG 2.00 1.56 1.99              
 

BP 
1.99 1.99 1.99 1.82             

 
CT 2.00 1.99 1.97 1.99 1.90            

 
RA 1.99 1.99 1.93 1.99 1.99 1.99           

Rhizophora- 
ceae 

 
RM 

2.00 1.99 1.72 1.99 1.73 1.85 1.86          
Euphorbia- 

ceae 
 

EA 1.94 1.99 2.00 1.99 1.99 2.00 1.99 2.00         
Sterculia- 

ceae 
 

HL 1.99 1.99 2.00 1.94 1.99 1.99 1.99 1.99 1.98        
 

LL 
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00       Combreta- 

ceae  
LR 2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 2.00 2.00 1.99      

Wurmb  
NF 1.99 1.99 2.00 1.99 1.99 2.00 1.99 1.99 1.99 1.99 2.00 2.00     

Astera- 
ceae 

 
PI 2.00 2.00 1.98 1.99 1.99 1.87 1.99 1.89 2.00 2.00 1.99 2.00 2.00    

Sonneratia- 
ceae 

 
SO 

1.99 1.99 1.99 1.95 1.84 1.99 1.98 1.99 1.99 1.99 1.99 2.00 1.99 1.99   
Melia- 
ceae 

 
XG 1.97 1.99 1.99 1.82 1.96 2.00 1.99 1.99 1.98 1.99 2.00 2.00 1.99 2.00 1.99  

  
  
 



6.2.2. Hyper-dimensionality problems 
 

The high-dimensional characteristics of hyperspectral data can trigger the 
phenomenon known as “the curse of dimensionality” (Bellman, 1961). This phenomenon 
causes imprecise class estimates in the spectral feature space, which result in low output 
classification accuracy (Bellman, 1961; Hughes, 1968). Consequently, this situation 
demands more training samples in order to construct better class estimates, thereby 
dramatically increasing the cost of the field survey. 
 

Chapter 3 demonstrated an alternative to the existing account of feature selection 
tools to deal with the curse of dimensionality. This alternative feature selection tool was a 
form of genetic search algorithms (GA). Pioneering work that gained significant insight 
into this issue was carried out by Siedlecki and Sklansky (1989). The authors reported 
that the GA-based band selector performed better than many other popular band selection 
algorithms (e.g., branch and bound search, exhaustive search, and sequential forward 
selection). The authors rigorously tested their hypothesis, using a synthetic error model 
instead of real remotely sensed data in order to eliminate the variables (e.g., sample size, 
the number of spectral bands, and the number of classes of interest) that could have 
biased the outcome. Further evidence of the success of GA-based band selection tools can 
be found in recent hyperspectral remote sensing publications (Yu et al., 2002; Fang et al., 
2003; Kooistra et al., 2003, Cogdill et al., 2004). 

 
In contrast to the acid tests completed so far (Lofy and Sklansky, 2001; Kavzoglu 

and Mather, 2002; Yu et al., 2002; Ulfarsson et al., 2003), the work presented in Chapter 
3 was the first time that the GA-based band selector had been tested on spectrometer 
records of very high dimensionality, comprising 2151 bands of leaf spectra of 16 tropical 
mangrove species. It turned out that the GA-based band selector was able to cope with 
spectral similarity at the species level. It selected spectral bands that related to the 
principal physico-chemical properties of plants (Curran, 1989; Elvidge, 1990; Kumar et 
al., 2001) and, simultaneously, maintained the separability between species classes at an 
80% level of classification accuracy. The selection result is shown in Figure 6.2. 
 

It is worth noting that only one of the six spectral locations illustrated in Figure 
6.2 is in the visible region where electro-magnetic energy interacts with mangrove leaf 
pigments (e.g., chlorophylls, carotenoids) (Menon and Neelakantan, 1992; Basak et al., 
1996; Das et al., 2002). This outcome may be interpreted as an indication that the spectral 
responses of mangrove pigments contain less important spectral information for 
mangrove species discrimination than the information from the spectral responses of the 
other leaf components that interact with electro-magnetic energy at longer wavelengths. 
Unfortunately, the results of studies so far on the physico-chemical properties of leaves of 
different mangrove species are still inconclusive when it comes to pinpointing which 
components of mangrove leaves are spectrally separable (Menon and Neelakantan, 1992; 
Tomlinson, 1994; Basak et al., 1996; Das et al., 2002). A thorough comparative study is 
therefore recommended in order to confirm this part of the findings �



Lastly, the capability of the GA-based band selector to cope with a very complex 
band selection problem reported in Chapter 3 encourages the future use of the band 
selector for detecting spectral bands that show strong vegetation responses to different 
physico-chemical treatments (e.g., nitrogen, illumination) in both laboratory and field 
scenarios. It is anticipated that the GA-based band selector will be a viable alternative to 
the statistical and derivative analyses popularly used at the moment (Tsai and Philpot, 
1998; Mutanga et al., 2003). 

 
Figure 6.2: Six average spectral positions selected by the GA-based feature selection 
algorithm 
 
6.2.3. Noise levels 
 

Another important problem when using hyperspectral data is low signal-to-noise 
ratios. This problem is normally solved by applying spectral smoothing filters to each 
spectral profile in order to create convolutions of spectral values, thereby reducing the 
noise level. According to the review in Chapter 4, however, it was found that at least 20 
recently published reports used subjective ad hoc inspections as their measures for 
selecting filter types and the parameters. In other words, they did not employ any strict 
optimizing criterion to select suitable smoothing filters for their studies. It is believed that 
the ad hoc approach is not the most appropriate way. Furthermore, it is hypothesized that 
smoothing filters can cause significant changes to the statistical properties (e.g., mean) of 
spectral data (see Figure 6.3). This statistical disturbance could then affect the outcome of 
subsequent analyses (e.g., maximum likelihood classifier, Jeffries-Matusita distance) that 
are based on statistical estimates of the data. 
 

In Chapter 4, it was proved that the above hypothesis is true (i.e., the effect of the 
smoothing disturbances on the class statistics is evident in Table 4.2). Thus, if preserving 
statistical properties of the original hyperspectral data is desired, smoothing filters that 
cause the minimum disturbance to the statistical properties of the original data should be 



objectively applied. One possible solution is to use a simple comparative t-test as a post-
smoothing measure for choosing an optimum smoothing filter for the hyperspectral data 
at hand. 

 
The purpose of the post-smoothing method (the t-test) proposed in Chapter 4 was 

to control the effect on the statistical estimate of popular smoothing filters such as the 
moving average and Savitzky-Golay that have no built-in ability to preserve the original 
statistical properties of the spectral data (i.e., these popular filters are based on underlying 
non-parametric mathematics that does not preserve statistical estimates of class 
information) (Kay, 1993). However, the post-smoothing method could have been omitted 
if the filter used had had the ability to preserve the statistical properties of the data. This 
ability could be achieved by designing a specialized smoothing filter, using an estimation 
theory such as maximum likelihood estimation (Oppenheim and Schafer, 1975; Kay, 
1993; Deng and Shen, 1997). In this way, class statistics of the original spectral data 
could be preserved by the filter after smoothing without the need for the post-smoothing 
statistical verification (i.e., no need to use the t-test method presented in Chapter 4). 
 

Similarly, if preserving other properties of the spectral data, including signal 
phases or signal-to-noise ratios, is desired, specialized smoothing techniques could be 
used as a replacement for the generic techniques (e.g., moving average and Savitzky-
Golay). With respect to the first case, preserving signal phases is particularly desirable 
for specific applications such as spectral derivative analyses. In this regard, specialized 
methods such as the Fourier transformation and wavelet decomposition would be the 
right choice because it has been proved that they can preserve the signal phase better than 
the generic smoothing methods (Curran et al., 1992; Schmidt and Skidmore, 2004). As 
for the second case, signal-to-noise ratios could be preserved by specific filters such as 
the Kawata-Minami filter, which is equipped with a least mean-square criterion that helps 
to maximize the signal-to-noise ratio (Kawata and Minami, 1984; Tsai and Philpot, 
1998).   

 
Nevertheless, according to the review in Chapter 4, application-specific 

smoothing methods such as the Fourier and wavelet transformation and the Kawata-
Minami filter are less popular in the field of remote sensing than generic methods such as 
the moving average and Savitzky-Golay filters. Consequently, tailoring specialized 
smoothing filters to specific requirements as a replacement for generic methods could be 
an interesting topic for future research. 
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Figure 6.3: An average spectral profile of plant leaves (a) before smoothing and (b) after 
smoothing; (c) a scatter plot of two principal wavelengths before (triangle) and after 
(square) smoothing 
 



6.2.4. Utilizing mangrove-environment relationships 
 

Spatial relationships between mangroves and the environment are well known 
(Macnae, 1968; Clough, 1982; Semeniuk, 1983; Tomlinson, 1994; Hogarth, 1999). These 
relationships result in the mangrove zonations that are usually found in tropical mangrove 
forests (Tomlinson, 1994; Hogarth, 1999; Vilarrubia, 2000; Satyanarayana et al., 2002). 
As a result, it is hypothesized in this thesis that these quantifiable spatial relationships 
between mangroves and their environment can be exploited for mangrove mapping. 
 

In Chapter 5, the relationships between mangroves and the surrounding 
environmental gradient were utilized. The relationships were incorporated into the 
mapping process via a typical Bayesian probability model. The Bayesian model 
functioned as a post-classifier to improve the quality of a mangrove map already 
produced. The environmental gradient used was a GIS layer of soil pH data. 
 

The integration of soil pH into the mapping process turned out to be worthwhile 
as it significantly increased the mapping accuracy: from 76.0% to 88.2%. However, the 
remaining confusion between R. mucronata and S. caseolaris points to the fact that soil 
pH data cannot help to resolve the similarity between the two species, and, as a result, 
more ancillary data such as leaf texture (i.e., captured by aerial photos) are 
recommended. Overall, it is anticipated that the methodology presented in this study will 
be used as a guideline for producing a mangrove map at the community or species level. 

 
 Lastly, follow-up research is already underway. First, the performances of other 
inference engines, such as artificial neural networks and the Dempster-Shafer theory, are 
now being compared with the outcome of Bayes’ rule used in this thesis. Second, despite 
the problem relating to interoperability (i.e., data incompatibility) (Bishr, 1998), the 
research question of how to draw a consensus from expert knowledge from different 
spatial and non-spatial data sources (e.g., mangrove scientific publications, empirical data 
from other study areas, and opinions from local mangrove experts) is being resolved 
using recent advances in geo-information theories, including (i) suitability modelling 
(Bonham-Carter, 1994; Yamada et al., 2003), (ii) the personal construct theory (Kelly, 
1955; Zhu, 1999), and (iii) the semantics look-up table method (Comber et al., 2004). 
 



6.3. This thesis in a nutshell! 
 

This thesis is all about exploring remote sensing methods that can be used for 
mapping mangroves at the species level. The significance of this thesis can be 
synthesised into three major points. First, I point out the reason why there is the need for 
the continuation of my research on the use of hyperspectral sensors for mapping 
mangroves at the species level. Second, I tell the reader that there is no real reason to feel 
panic with the technical complications when working with hyperspectral data. Third, I 
explain why my attempt to incorporate the mangrove-environment relationships into the 
mapping process (i.e., an idea that seems to be too expensive to implement) could lead to 
an operational method in the near future. 
 
6.3.1. Why is the follow-on research needed? 
 

The evolution of remote sensing sensors from multispectral sensors to 
hyperspectral sensors gives birth to a practical tool for detailed mangrove studies. The 
hyperspectral sensor does not only share advantageous characteristics of its ancestor, 
multispectral sensor, particularly on the aspect of cost-effectiveness. It allows us to 
exploit the relationships between mangroves and their spectral characteristics in finer 
detail. This successful exploitation is evident in the following examples. Hirano et al. 
(2003) used the 224-band Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 
sensor for producing accurately the map of the mangrove communities of the Everglades, 
Florida. Furthermore, Demuro and Chisholm (2003) successfully used the HYPERION 
hyperspectral sensor, accommodated on the satellite platform, for discriminating 8-class 
mangrove species communities in Australia. The situation looked even more optimistic 
when we discovered that pure mangrove spectra (laboratory spectra) contained enough 
information for discriminating most of mangrove species (Chapter 2). Nevertheless, the 
hyperspectral research on mangroves published to date (Green et al., 2000; Demuro and 
Chisholm, 2003; Held et al., 2003; Hirano et al., 2003) is still inconclusive. As a result, 
more research is still needed as to see whether the mangroves can be mapped at the 
species level when airborne or satellite hyperspectral sensors are used under the field 
conditions where there are numerous factors that could degrade the spectral signal 
received by the hyperspectral sensor, thereby making it harder to separate mangrove 
species. 
  
6.3.2. Be at ease with hyperspectral data 
 

With respect to spatial resolution of hyperspectral sensors, studying mangroves in 
detail does not require expensive high spatial resolution data as one might think. 
According to the spatial sensitivity analysis of tropical mangrove distribution reported by 
Manson et al. (2003) and our own experience in the tropical mangrove forests, it is clear 
that mangrove forests possess low spatial heterogeneity of mangrove species distribution 
and, therefore, spatial resolution of commercial hyperspectral sensors installed on the 
satellite platform such as HYPERION (i.e., 30 m spatial resolution) should be adequate 
for the study of mangroves at the species level. This means that mapping mangrove 
species does not require expensive airborne hyperspectral sensors as in case studies of 



other terrestrial plants at the species level (Schmidt and Skidmore, 2003; Clark et al., 
2005).  
 

In addition, using hyperspectral sensors for mapping mangroves at the species 
level does not necessarily require more complex data treatments than the case of typical 
multispectral sensors. In other words, one can still use those existing methods (e.g., 
statistical-based classifiers etc.) that are normally used for the case of multispectral 
analyses for analysing hyperspectral data except for the requirements of special 
treatments for (i) high dimensionality, and (ii) high noise levels.  
 

First, high dimensionality of hyperspectral technology is a two-sided sword. On 
the one hand, the inter-band correlations provide useful information about the shape of 
the spectral distribution in the feature space. This shape information has been proved that 
it helps increase the mapping accuracy (Landgrebe, 1997). This author falsified the old 
notion that the inter-band correlations are not good for classification (Ramsey III and 
Jensen, 1996). On the other hand, when there is limited number of field samples, using 
too many spectral bands (e.g., > 20 bands) at the same time could reduce the precision of 
the mathematical model of class information in the feature space (i.e., the curse of 
dimensionality (Bellman, 1961; Hughes, 1968)). To our relief, this problem of high-
dimensionality can be solved straightforwardly by the use of feature extraction/selection 
algorithms (Lee and Landgrebe, 1993; Du and Chang, 2001; Kavzoglu and Mather, 
2002). In the light of the existing tools, we have proposed an innovative form of genetic 
search algorithms for reducing the number of bands and, at the same time, maintaining 
mangrove species separability (see Chapter 3).  
 

Second, it is well-known that narrow-band sensors of hyperspectral instruments 
can capture a very low amount of energy, thereby resulting in poor signal quality (i.e., 
noisy signals). This problem could get worse when there are additional external 
disturbances such as the fluctuation of the atmospheric states (Oppenheim and Schafer, 
1975; Landgrebe, 1997; Lyon, 2004). Moreover, the connection points between spectral 
detectors of the hyperspectral instrument could also play an important role in the quality 
of the spectral signal recorded (Schmidt and Skidmore, 2004). We have raised awareness 
of this issue in Chapter 4 and discuss about the spectral convolutions, which are 
popularly used for solving this signal-noise problem. In addition, we have proposed a 
method that can be used to visualise the trade-off between the noise levels reduced and 
the statistical estimate of the original data disturbed by the spectral convolution. 
 
6.3.3. Is exploiting non-spectral information promising?  
 

This thesis supports the idea of incorporating ancillary ecological data into the 
mapping process. This concept of integrating extra information into the mapping process 
has been borrowed from successful case studies of mapping other plant species 
(Skidmore et al., 1997a, 1997b; Lehmann and Lenz, 1998; Berberoglu et al., 2004; 
Comber et al., 2004; Schmidt et al., 2004). In short, similar to the extra spectral bands (or 
layers) provided by the hyperspectral sensor, the extra GIS layer produced by exploiting 
the relationships between mangroves and the environmental gradients can be thought as if 



it is an extra non-spectral dimension (i.e., ecological dimension). The outcome of this 
thesis in Chapter 5 points out that the integration of ecological data (soil pH) into the 
mapping process is worth the extra fieldwork effort. It significantly increases the 
mapping accuracy of the final mangrove map of Cape Talumpuk from 76% to 88%. More 
importantly, soil pH is a cost-effective parameter. It is easy to analyse (i.e., using a pH 
probe), and, in some countries such as Thailand*, soil-related parameters such as soil pH 
are often available for the research as they are collected regularly from the mangrove 
forests to monitor their conditions. In addition to the success of adding soil pH data into 
the mapping process, I have a plan to test other ecological gradients that can be gathered 
cost-effectively (e.g., leaf textures captured by aerial photos, LIDAR-derived elevation 
maps, and inundation frequency maps produced by incorporating elevation maps with 
automatic tidal records) for improving the mapping accuracy further (e.g., > 90% of 
accuracy). If this plan is successful, it will strengthen the possibility of exploiting non-
spectral information for mangrove species mapping at the operational level. 
 
6.4. Conclusion 
 

As the potential of hyperspectral and ecological data for detailed mangrove 
mapping has already been unveiled, the main goal of this study has been achieved. The 
achievement of this thesis can be summarized as follows: 

 
(1)  The thesis reports that hyperspectral data contain adequate spectral details for 

discriminating most mangrove species. Further studies using airborne and satellite 
hyperspectral sensors are therefore encouraged. 

(2) A form of genetic search algorithms has been successfully tested on a species-
level problem of very high dimensionality. The results point to the capability of 
the genetic search algorithm to help in solving the problem of high 
dimensionality.  

(3) The mistreatment of hyperspectral smoothing has been investigated, and an 
alternative method of optimizing the smoothed result is proposed.  

(4) Mangrove-environment relationships have been successfully exploited for 
mangrove mapping, using a Bayesian expert system. It has been found that the 
relationships help to increase the accuracy of the final mangrove map at the species level 

                                                 
* Forest Research Office, Royal Forest Department: www.forest.go.th/Research/English/index.htm  
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